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1. Model description
To model SARS-CoV-2 epidemiological dynamics, we have developed an extended SIR model. 
The model is (1) age structured, (2) contains vaccinated, unvaccinated, and recovered susceptible 
individuals, and (3) allows for the introduction of new viral variants (also referred to as strains). 
Therefore, each state variable can now be expressed as a tensor X = X(a, v, q) for state X and age 
a, vaccination status v, and strain q. Some rates also depend on these variables. Importantly, 
these variables can each have a flexible number of possible values. That is, the default version 
of the model has four age classes, but can defined with any given n age groups, including just 
one age group for a non-age-structured model. Similarly, for vaccination, v = v0 corresponds 
to an unvaccinated state and the model supports an arbitrary p number of vaccines, and 
likewise for variants an arbitrary m number can be defined. Finally, an arbitrary number of 
recovered values can be defined, which functions as ‘quasi-vaccinated’ values which also 
provide partial protection against reinfection. Because the length of S is now different than 
other states, the matrix M converts between S and other states by summing across strains.

The number of individuals (across ag∑e a, vaccination status v, and strain q) in each compartment

can then be calculated as sums, e.g. a,v,q X(a, v, q). By summing only over certain variables, we 

can access quantities such as the number of vaccinated infected adults with B.1.1.7, or the number 
of recovered children who were infected with the original 2020 circulating strain.

The model also has the flexibility to make any parameter time-varying. After setting the initial 
values, there is a framework for specifying the date and the new value for the parameter. This 
is used, for example, with mortality rates, which were higher early in the epidemic and then 
declined as treatments improved. Similarly, it is possible to calibrate a set of values for a 
parameter with specified time periods. This capability is used foremost for social distancing, which 
varies considerable throughout the epidemic, but also for parameters like diagnosis rate which are 
known to differ throughout epidemic.

In addition, we have a publicly available tool https://covidmodeling.fredhutch.org/ which 
has additional documentation and the ability for the user to see the most up to date 
projections and explore many variables in the ‘user-adjustable’ page.

2. Model structure The model is expressed as the set of differential equations (where overdot
denotes time derivative),
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with states listed in Table S1 and parameters in Table S2,

Ṡ = −MT × λ(a, v, q)S−MT × ν(a, q)

+ Y × (rMA2+ rMIM+ rHH+ rADA2+ rMDM+ rHDH)

+W × S

Ė = λ(a, v, q)M × S− γ1E+ ν(a, q)

Ȧ1 = (1− {1−VESYMP(v, q)}π)γ1E− (ρA∆IM (a) + γ2)A1

Ȧ2 = γ2A1− (ρA∆IM (a)− rA)A2

Ṗ = π {1−VESYMP(v, q)} γ1E− (ρA∆(a) + γ2)P

˙IM = γ2m(a)P− (∆IM (a) + rM )IM

˙IS = γ2(1−m(a))P− (∆IS(a) + h(a) + f(a))IS

Ḣ = h(a)IS− (rH + δH + f(a))H

Ḟ = f(a)(H+ IS)

˙DA1 = ρA∆IM (a)A1− γ2DA1

˙DA2 = γ2DA1+ ρA∆IM (a)A2− rADA2

ḊP = ρA∆(a)P− γ2)DP

˙DM = γ2m(a)DP+∆IM (a)IM− rMDM

ḊS = γ2(1−m(a))DP+∆IS(a)IS− (h(a) + f(a))DS

˙DH = h(a)DS+ δHH− (rH + f(a))DH

ḊF = f(a)(DH+DS)

(1)

A schematic cartoon of the model is provided as Fig  S1. In words, this model describes a population 
of susceptible individuals S(a, v = v0, q), who can become vaccinated S(a, v ∈ v1, . .., vp, q) and/or 
infected. Infected individuals begin in an exposed state E, and after a waiting time γ1 proceed to 
infection as asymptomatic (A1, probability 1 − π) or symptomatic (P, probability π). Note that P 
is a pre-symptomatic period with waiting time γ2 for symptomatic infections. After the pre-
symptomatic period, symptomatic infections are divided into mild (IM, probability m(a)) or 
severe  (IS, probability 1 − m(a)) infections. Mild infections recover with rate rM . Asymptomatic 
infections have an analogous state A2 from which they recover at rate rA. Severe  infections are 
defined as those that lead to hospitalization, H, and possibly  death, F. Hospitalized infected recover 
at rate rH , or die with rate f(a) and it is also possible to die outside the hospital with the same rate.

Infected individuals are diagnosed as COVID-19 cases  with a rate ∆X(a) that varies by symptom 
severity  (∆IM (a), ∆IS (a), ∆H for mild, severe,  and hospitalized respectively. Asymptomatic in-
fections are assumed to be diagnosed at a rate proportionally inferior to symptomatic defined by ρA. 
Diagnosed individuals move to a set of parallel states, DA1, DA2, DP, DM, DS, DH and DF. 
We assume any individual who dies was diagnosed ultimately. That is, the states F and DF are 
combined for the total number of deaths. Diagnosed cases  are used for comparing to data and for 
lowering transmission among diagnosed (see below).
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Recovery is not a separate state, but incorporated into the susceptible state to allow for reinfection 
(immunity can be parameterized to be partial or complete). The number of recovered states is also 
flexible. F or example, information on infecting strain can be retained t o investigate cross-strain 
immunity, or vaccination status can be assumed to trump infection in terms of re-infection, or other 
possibilities. How individuals move from the infected states to the compartments of S are described 
by the Y matrix. Waning immunity, that is moving individuals from the vaccinated and recovered 
compartments of S to be newly susceptible, is also possible and is described by the W matrix.

Vaccinations occur by adjusting the status of susceptible (or recovered, because recovered individuals 
can still be vaccinated) within S. Infected individuals with new variants can enter the system with 
rate νimport(a, q). Note we assume a closed system (conservation of number), meaning this model 
could be interpreted as some KC resident visited elsewhere, contracted the variant, and returned 
or also that some KC resident left permanently precisely when a newly infected individual entered. 
New strains are also defined by their infectivity νinf (q) and severity νsev(a, q), relative to the original 
strain. It is also possible to set the starting prevalence of different strains in the initial conditions, 
which we favor as this is generally more straightforward to estimate than the importation rate.

There are several additional model features that adjust the dynamical system, which are detailed in 
the following sections.

Table S1. Table of model states.

State Description Notes
S Susceptible Different length than other states because no infecting strain
E Exposed
A1 Asymptomatic 1 Analog to P
A2 Asymptomatic 2 Analog to IM/IS
P Pre-symptomatic
IM Infected (mild)
IS Infected (serious)
H Hospitalized
F Dead Assumed diagnosed after death
DA1 Diagnosed Asymptomatic 1 Analog to DP
DA2 Diagnosed Asymptomatic 2 Analog to DM/DS
DP Diagnosed Pre-symptomatic
DM Diagnosed Infected (mild)
DS Diagnosed Infected (serious)
DH Diagnosed Hospitalized
DF Diagnosed Dead
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Force of infection.
The force of infection λ(a, v, q) governing transmission depends  on the state  of the transmitting 
individual (e.g. asymptomatic transmission is less likely, certain variants are more infectious, 
certain ages interact less). It also depends on vaccination and the time-dependent reduction in contacts 
mediated by social/physical distancing σ(a).

λ(a, v, q) =[1− σ(a)](1−VESUSC(v, q))κ(a)

C(a)× (1−VEINF(v, q))β
∗[1− σ(a)]

∑
X∈X

βXX(a, v, q)/N(a) (2)

where X = {A1, A2, P, IM, IS,H,DA1, DA2, DP,DM,DS,DH} is the set of all potentially
infectious states. Naturally, susceptible, exposed, recovered, and deceased individuals also do not
contribute to ongoing infection.The key parameter for infection is β∗, the base rate of transmission,
which is further modified by state-specific transmission rates, βA1, βA2, βP , βM , βS , βH . Note it is
assumed that hospitalized individuals do not contribute to transmission (βH = 0). For the diagnosed
states, the effect of reducing interactions upon being diagnosed is handled by multiplying the state-
specific βX by the reduction in transmission due to diagnosis, βD. Both β∗ and βD are calibrated
parameters.

The model uses an empirically derived contact matrix C(a) that parameterizes the probability of in-
teractions between transmitting and exposed individuals in different age groups. The contact matrix
is assembled from those specifying interactions from different locations (Supplementary Table 3),
and a location-specific social distancing parameter can also be specified. Note that these location-
specific social distancing parameters are scalars and not age-stratified.

C(a) =(1− σschool)Cschool(a) + (1− σhome)Chome(a)

+ (1− σwork)Cwork(a) + (1− σother)Cother(a)
(3)

Transmission is further affected by κ(a) the relative age-specific susceptibility. The reduction in
transmission due to social distancing is handled by the σ(a), which varies between 0 and 1 and is
also age-specific (i.e., the more susceptible oldest age group can have a higher value for social dis-
tancing than younger age groups). It is assumed that social distancing affects both transmission and
susceptibility, thus it is applied to both sides of the contact matrix C(a). The location-specific social
distancing parameters (σschool, σhome, σwork, and σother) reduce only interactions corresponding to
that location in the contact matrix, for example due to the closing of schools.

Dynamic social distancing. We include a time-varying, age-stratified vector σ(a, t) that governs
social distancing (non-pharmaceutical interventions) including reduced contacts through personal
choices and/or mandated partial lockdowns, as well as reductions in exposure contacts due to mask
wearing, physical distancing, capacity limitations, vaccination requirements, etc. σ(a, t) varies from
0, indicating pre-pandemic levels of societal interactivity and no masking, to 1, indicating complete
lockdown with no interactions. σ(a, t), along with reductions in the susceptible population due
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to infection or vaccination, is the main driver of Reffective and therefore epidemic peaks and de-
clines.

After the calibration period, the issue is how to set σ(a, t) for forward simulation into the future, as
σ(a, t) is changing throughtime in response to humanbehavior. We use dynamical social distancing
based on a specified threshold, such as the current diagnosed cases or hospitalizations or some com-
bination. The threshold is a flexible, user-specified function, and thus can be based on government
criteria for implementingrestrictions, such as weekly or bi-weekly case or hospitialization numbers.
This function is parameterized by the following values: the maximum Tmax and minimumTmin

thresholds for increasing or decreasing restrictions (corresponding to changing σ), the period τ over
which the threshold is calculated, the restricted and released social distancing values σmax(a) and
σmin, and the incrementσinc by which to change σ when releasing restrictions. Thus we have

σ(a, t) =


σmax(a)

∑
τ T > Tmax

σ(a, t)− σinc
∑

τ T < Tmin

σmin σ(a, t)− σinc < σmin

(4)

where the sum of the threshold metric(s)
∑

τ T is taken over time period τ . Based on local policy
for decision making, this is set at τ = 1 week intervals in the current simulation. Thus, for example,
the system triggers increased restrictions if the weekly number of hospitalizations rises over the
max threshold and distancing immediately becomes σmax(a) which is age-variable: 70% of pre-
pandemic levels in non-seniors and 50% in seniors. Then, once hospitalizations drop below the
release thresholdTmin, 10% of the distancing is removed every τ weeks until reaching the minimum
social distancing σmin. This value is not necessarily zero because we expect persistent features such
as masking, work from home and avoidance of large social gatherings will continue to limit the
numberof interpersonal contacts relative to pre-pandemiclevels.

Vaccination mechanisms. Original COVID-19 vaccine efficacy trials measured reductions in symp-
tomatic disease. Therefore, it is unclear whether reductions in disease were mediated by totally
prevented infections, or rather infections that were more likely to be asymptomatic. Therefore, we
include the possibility of vaccines that work by several mechanisms and include three parameters
controlling the effect of vaccination, VESUSC, VESYMP, VEINF. They are all vectors, so that if
there are multiple vaccines defined, they can all have unique vaccine effectivenesses, likewise for
any recovered classes. Vaccine effectivenesses are also strain-specific. The vaccine can completely
block infection and reduce the number of vaccinated individuals that are susceptible by some frac-
tion (VESUSC), and thus modifies the left-hand side of the contact matrix, affecting susceptibility.
Or, it can block symptomatic disease in individuals who are infected despite vaccination (VESYMP),
altering p which controls the proportion of symptomatic and asymptomatic infections. Finally, it can
decrease the possibility of onward transmission in individuals who are infected despite vaccination
(VEINF), and thus it modifies the right-handside of the contact matrix, altering β∗, thereby reducing
transmission. Each vaccine efficacy ranges from 0-1. Furthermore, there is an additional vaccine
eficacy, that against hospitalization (i.e. severe disease), conditional on being infected, VEH.

Vaccination rollout. The key parameters that govern vaccination distribution are the vaccination
rate, Vrate, the vaccination distribution, Vdist, the vaccination coverage limit, Vcoverage, and the
vaccination priority, Vpriority . The vaccination rate is the numberof vaccines distributed per day and
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is set per vaccine.  The vaccination distribution describes what percentage of vaccines  are distributed to 
each age group. This can be set proportional to the percentage of the population for an equal 
distribution or can be used to prioritize certain age groups. For example, the initial vaccine rollout was 
targeted primarily at the elderly, then adults, and finally  certain segments of the youngest age group. 
The vaccination coverage  describes the upper limit of coverage  to apply. It is applied per age group. 
The vaccination priority parameter is a vector of age groups, and describes the order to reallocate 
available  vaccines  if one or more of the age groups has reached the coverage  limit. All  of these 
parameters can change throughout the vaccine rollout, i.e.  to increase or decrease the doses available,  
using the standard temporal parameter framework.

Both susceptible and recovered individuals are eligible  for vaccination, and are applied proportion-ally. 
While in theory individuals in the infected classes  could be vaccinated, this is not implemented in the 
model, and this follows  advice to not be vaccinated while currently ill with COVID. The V matrix 
describes which states are eligible  for vaccination, as there can be a variable number of recovered 
states defined for the model, as well  as what proportion of the total V  rate doses available  are for each 
vaccine.

3. King County model calibration.

Data. The model outputs were calibrated to three corresponding cumaltive metrics in King County WA:  
diagnosed cases,  hospital admissions, and deaths. Thus corresponding to the cummlative values  for the 
following  states cases  = (DA1 + DA2 + DP + DM + DS + DH), hosptializations = (H + DH), 
deaths = (F + DF). Each metric was tracked by age,  which we consolidated into the 4 age groups a, so 
that calibration was performed against 12 metrics total.

Due to effects  of weekends and weekdays,  some noise in the data, and the tendency of the daily time 
series to be auto-correlated, we took a 7 day smoothed average  of 3 days before and after the day of 
interest, and then used weekly  values  of the metrics to calibrate against (that is 1 value every  7 days). 
Because  the metrics were on very different scales,  for example with many more cases  than deaths or 
hospitalizations and differences  across age classes,  we normalized the metrics. F or each of the 12 
metric time series,  we divided by its mean, and applied the same procedure to the model output, also 
normalizing by the mean of the data metrics.

Algorithm. We used an Approximate Bayesian  Computing (ABC)  algorithm implemented in the 
EasyABC  R package using the ABC  rejection function. This algorithm samples from the prior 
parameter distributions, runs the model to calculate the outputs, then calculates  the distance between the 
model outputs and the data metrics. Because  we already normalized the metrics, we used a simple 
Euclidean distance to select  the 100 best fitting parameter sets. These formed the parameter posterior 
distributions, and we used this set of parameterizations in the simulations to incorporate parameter 
uncertainty.

Calibrated parameters. The m odel calibration w as performed in two stages.  An initial calibration w as 
performed for the initial epidemic period, w here the d ate o f the initial case t 0 w as a calibrated parameter, 
and the m odel w as calibrated to data through April 30, 2020.  The following parameters w ere calibrated: β∗, 
βD, t 0, σ(a), ∆IM (a), ∆IS (a), ρA(a), m(a). A ll parameters w ere given uniform prior distributions based 
on the best available  data (either King County W A data or published studies). W e obtained 100 
parameterizations which we used for the posterior distributions of the parameters. We performed a 
second calibration for the epidemic state just before the simulation
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period, using data from April 1, 2021  through June 15, 2021.  In order to retain the initial period 
parameterizations for β∗, βD, and m(a), we used the emprical posterior distribtion from the inital 
period calibration as the prior distribution for the final period c alibration. We performed the final 
period calibration with uniform priors for the following parameters: σ(a)[1], σ(a)[2], ∆IM (a), 
∆IS (a), ρA(a), where σ(a)[1] was for the period April 1, 2021  through April 24, 2021,  and σ(a)[2] 
was for the period April 25, 2021  through June 15, 2021,  in order to fit the increase and decline 
in cases  during the calibration period. During both calibrations the σschool parameter was set to 1, 
reflecting the fact that schools were closed.  Results presented in Fig S2, S3, S4 and S5.

4. Initial conditions.

Cumulative incidence by age (cia) and current prevalence on June 1st, 2021  are back-calculated (see 
next section) from hospitalization in King County through July 31st, 2021  vaccination frequency by 
age group (fva) is derived from the CDC. Using this information, we populate all compartments 
using the following steps.

1. We subdivide the entire population, by age group (Na) into three immune classes: “suscepti-
ble” (Sa), “vaccinated” (Va), and“recovered” (Ra). This gives a total of 12 subpopulations.

2. The total prevalence by variant is set to the back calculated value for overall prevalence. It is
assumed that, of initial infections, 80% are with the Alpha variant and 20% are with Delta.
For each we create a 12x12 next generation matrix and use the normalized eigenvectors to
subdivide the total prevalence by age and immune classes. This gives a total of 24 infected
populations.

3. Each of the 24 infected populations is further subdivided into disease stages (such as symp-
tomatic, diagnosed, hospitalized, etc.) using a quasi-steady state approximation.

All other initial populations, such as those correspondingto “waned” immunestates, are assumed to
be zero initially.

Back-calculating infections . Calculation of our initial conditionsrelies on back calculation of infec-
tions from hospitalization data, which we assume to be more consistently reported. We reconstruct
infections by age, xa, from the combinationof hospitalizations and non-hospitalized deaths by age,
ya. We assume that the time from infection to hospitalization is exponentially distributed and fur-
thermore we penalize large differences in xa from one day to the next. We calculate ya by solving
the following regularized system with non-negative least squares.

(ATA+ ω2ΓTΓ)xa = ATya/IHRa (5)

The matrix Γ is a first-order difference matrix and the matrix entry Ai j represents the probability 
that an individual infected on day j will  become hospitalized on day i. IHR is the infection hospi-
talization rate.
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Table S3. Estimated location specific  contact matrices making up the contact net-work C(a), 
showing the number of contacts in the age group in the first column with the age group in each 
row.

Cschool Chome

↗ 0-19 20-49 50-69 70+ 0-19 20-49 50-69 70+
0-19 4.23 0.79 0.48 0.01 2.02 2.25 0.62 0.20

20-49 0.38 0.30 0.06 0.00 1.08 1.49 0.34 0.09
50-69 0.47 0.12 0.07 0.01 0.61 0.71 1.04 0.10

70+ 0.01 0.01 0.02 0.01 0.50 0.45 0.25 0.45

Cwork Cother
↗ 0-19 20-49 50-69 70+ 0-19 20-49 50-69 70+

0-19 0.19 0.61 0.11 0.00 3.15 1.65 0.46 0.08
20-49 0.29 4.74 0.89 0.00 0.79 2.92 0.83 0.13
50-69 0.11 1.83 0.59 0.00 0.45 1.70 1.29 0.24

70+ 0.00 0.00 0.00 0.00 0.20 0.65 0.61 0.29
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Fig S2. The 100 parameterizations shown against data for diagnosed cases  (points) by age group 
for the calibration period.
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Fig S3. The 100 parameterizations shown against data for hospitalizations (points) by age group 
for the calibration period.
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Fig S4. The 100 parameterizations shown against data for deaths (points) by age group for the 
calibration period.
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Fig S5. Posterior distributions for the calibrated parameters showing the distribution of the 100 
parameterizations retained.
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Fig S5. (continued) Posterior distributions for the calibrated parameters showing the distribution of 
the 100 parameterizations retained.
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Fig S6. The 100 parameterizations shown against data for cumulative cases, 
hospitalizations and deaths (points) beyond the calibration period up to September 1, 2021.
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6. Additional results

Fig S7. Cumulative hospitalizations by vaccination status 
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Fig S8. Predicted effects of expanding vaccination to kids 5-11 years: A) Overall hospitalizations 
averted; B) Percentage hospitalizations averted and C) Combined effects on hospitalizations and time at 
maximum social distancing over the school year. All results are based on simulations in which vaccinating 
kids 5-11 years start Oct 2021 (green) or Jan 2020 (blue) compared to simulations without vaccinating 
this age group. Boxplots show median and IQR based on 100 simulations. Note, that expanded 

A) 

B) 

C)
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vaccination always results in reduction of hospitalizations or shorter time under elevated social 
distancing or both. 

Fig S9. Predicted effects of expanding vaccination to kids 5-11 years on youth hospitalizations: A) 
Hospitalizations averted and B) Percentage hospitalizations averted over the school year. All results are 
based on simulations in which vaccinating kids 5-11 years start Oct 2021 (green) or Jan 2020 (blue) 
compared to simulations without vaccinating this age group. Boxplots show median and IQR based on 
100 simulations.  

A) 

B)
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Fig S10. Simulations with fixed social distancing. A) Cumulative hospitalizations; B) Hospitalizations 
averted and C) Percentage hospitalizations averted over the school year when restrictions of social are 
kept at the minimum level (SDmin). All results are based on simulations in which vaccinating kids 5-11 
years start Oct 2021 (green) or Jan 2020 (blue) compared to simulations without vaccinating this age 

A) 

B) 

C) 
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group. Boxplots show median and IQR based on 100 simulations. Note, that expanded vaccination 
always results in reduction of the number of hospitalizations. 

Fig S11. Simulations with different social distancing ranges. Simulations with reactive social distancing 
using ranges with: A) Different levels of minimum social distancing (SDmin) for the same maximum social 
distancing (SDmax=30%) and B) Different levels of maximum social distancing (SDmax) for the same 
minimum social distancing (SDmin=10%). Results show mean values based on 100 simulations.  
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Fig S12. Effects of efficacy waning. A) Mean cumulative hospitalizations; B) Maximum number of 
hospitalized people over the school year and C) Percentage time of the school year under maximum 
restricted social distancing (SD) under scenarios assuming waning protection from vaccination and prior 
infections as described in Table 2 in the manuscript compared to scenarios without waning.

A) 

B) 

C)
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